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R E T R O G R A D E  C O N D E N S A T I O N  I N  T H E  C A S E  OF 
S T E A D Y  R A D I A L  F I L T R A T I O N  

O. Yu. Dinariev UDC 532.546 

A theoretical analysis of the processes occurring during filtration close to a well of a gas-condensate field is 

presented. 

In the practice of the exploitation of gas-condensate fields of complex composition, a situation is often 
encountered where the bed mixture occurs in a gas phase under initial thermobaric conditions and then becomes 

thermodynamically unstable when the bed pressure decreases as a result of gas withdrawal. The so-called 

phenomenon of retrograde condensation [1 ] takes place, where a liquid phase comes out of the gas on decrease in 

pressure. Since the viscosity of the liquid greatly exceeds that of the gas, retrograde condensation exerts a strong 

effect on flitration processes. In particular, it is well known that the fallout of condensate can decrease by orders 

of magnitude the yield of an exploratory well with depression remaining intact. Therefore, we are confronted with 

the problem of predicting the dynamics of a bed mixture with allowance for gas-liquid phase transitions. In 

principle, along with the solution of a system of partial differential equations that describe the filtration of a 

multicomponent mixture, such a problem presupposes the calculation of phase equilibria at each point [2 ]. The 

calculation is a rather complex problem in itself and requires much time if performed on a computer. In view of 

this, of special interest are cases where the thermodynamic part of the problem can be simplified without loss of 

generality. 
In the present work a steady-state two-phase flow near a well is investigated. It is shown that the system 

of equations of two-phase multicomponent filtration is reduced to ordinary differential equations admitting 

analytical solutions under certain natural assumptions. To obtain an adequate description of phase conversions, it 

is sufficient to known the thermodynamic behavior of a mixture having a single fixed composition. 

Suppose there is a steady-state cylindrical symmetric flow of a multicomponent mixture in a homogeneous 

isotropic porous medium with the permeability k. We consider an isothermal process, and let T be the corresponding 

temperature. Let us introduce the geometric parameters of the problem: r, distance to the axis of the well; rw, radius 

of the well along the drill bit; h, thickness of the permeable layer. Let N be the number of components in the bed 

mixture. Then the equations of multicomponent two-phase filtration [2 ] are reduced to the conservation equations 

of the flows of the components 

(( d rk n i g f g / Z ;  1 dpg -4- n i = 0 d---i dr liq fliq flliq dr ' (1) 

i = 1 ,  . . . ,  N .  

Here nig is the density of the i-th Component molecules in the liquid phase, ktg is the viscosity of the gas phase, 

/All q is the viscosity of the liquid phase, pg is the pressure in the gas phase, Pliq is the pressure in the liquid phase, 
fg and fliq are the phase permeabilities for the gas and the liquid, respectively, which are functions of pore space 

saturation s with the liquid phase. Let us introduce the notation r/= In (r/rw). 

Equations (1) have the first integrals 
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dPliq = Qi/(2arhk) n i g f g f l ;  1 dpg + fliqflli-ql dr/ dr/ rti liq 
(2) 

i - - 1  . . . . .  N ,  

where Qi is the flux of the molecules of the i-th component. If it is assumed that the expressions for fg and fliq as  

functions of s, the expressions for the viscosities/~g = #  (T, n/g), flliq = flliq( T, niliq), and the equations of state pg 

= p(T,  nig) , Pliq = p(T,  n~liq) are known, then we seek the (2N + 1) unknown functions nig , ntliq, s. The problem 
becomes closed when Eqs. (2) are supplemented with the phase equilibrium equations 

Ir i (T ,  n]liq) = /r (T ,  n]g), i ,  ] = 1 . . . . .  N ,  (3) 

where tr are the chemical potentials, and also with the equation for the capillary pressure jump 

Pg -- Pliq = Pjump, (4) 

where Pjump --- Pjump(S) is a prescribed function. 
N 

Let us investigate Eqs. (2) in more detail. Let us introduce the notation: ng = ~ nig, the total density of 
N N i=1 

the gas phase; rtli q = ]~ n~liq, the total density of the liquid phase; Q = Z Qi, the total flow of the mixture molecules; 
i=1 i=l  

Cig = nig/ng is the concentration of the components in the gas phase; clliq = ntliq/nliq is the concentration of the 

components in the liquid phase; w is the mole fraction of the liquid phase in the mixture; q = Q/(2~kh); Cg = 
ngfguglq -1, Cliq = nliqfliqUlq-qlq -1. Then the system of equations (2) can be rearranged into the form 

dr~ Cig Cliq dr/ Ciliq = Qi /Q"  (5) 

Assuming that far from the well at pressures close to the initial bed pressure P0, the mixture occurs in the 

gas phase with the concentrations of components cio, it can easily be seen that Qi/Q = cio. Thus Eqs. (5) can be 

interpreted as conditions that connect the composition cig of the gas phase and the composition Ciliq of the liquid 

phase with the average composition cio in a system in which the gas and liquid phases coexist in thermodynamic 

equilibrium at the corresponding pressures pg and Pliq. Let W be the mole fraction of the liquid phase in this system, 

and then 

(1 - IV) Cig + W c i liq = Ci0" (6)  

Since the r ight-hand sides in Eqs. (6) are constants, W is a certain function of the pressures pg and Pliq: 

W = l,V(pg, Pliq). In principle, this function can be determined if we solve Eqs. (6) together with Eq. (3). Comparing 

Eqs. (5) and (6) and taking into account Eq. (4), we obtain a closed system of equations to determine the unknown 

quantities s, pg, and Pliq: 

dp~ = (1 W) - , dr/ - Cg 1 

dPliq 
_~ W'CIi -lq (7) 

dr/ 

Pg -- Pliq = Pjump �9 

Thus, the problem is reduced to two ordinary differential equations with coupling. To take adequate account 

of phase transitions, it is sufficient to have information about the phase transitions in a mixture of fixed composition 

cio. In order to obtain specific solutions of system (7), it is necessary to prescribe the r ight-hand sides of these 
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equations in explicit form. However, prior to obtaining an exact solution it is possible to obtain a number  of rigorous 

statements concerning the process of filtration by analyzing the general structure of system (7). 

Thus ,  if the liquid phase has a nonzero threshold of mobility s.,  two situations are possible: ei ther 

condensate is absent  (W --- 0) and s = 0, or it is present (W > 0) and s > s.. This means that  during f i l t rat ion 

retrograde condensat ion should occur with a jump in saturation. On the other  hand,  if we fix the pressure in the 

gas phase pg and let the ratio/Zg/ktli q approach zero, then, as follows from (7), the saturation s tends to unity. 

Thus,  a very viscous condensate  has a tendency to accumulate in the pore space near  the well. 

We will seek analytical solutions of system (7) for the case where Pjump -- 0. Then,  system (7) is reduced 

to a single ordinary differential equation 

dp _ (l  - (8) - 

and an equation for determining the saturation s 

W / ( 1  -- W) - - / l i q  w (1 - s) r s (1 - w)/qiq) �9 (9) 

Let us adopt a linear dependence for the phase permeabilities: 

fliq ---- S ,  fg = 1 - s (10) 

and assume the viscosities ~liq and/~g to be constant. Experiments as well as calculations by semiempirical equations 

of state [3 ] show that  the mole fraction of the liquid phase at a pressure below that of the start of condensation Pd 

is approximated well by  the expression 

a2 (11) 
W =  alP + - - ,  

p - a 3 

where al,  a2, a3 are positive quantities that depend on T and cio. Let us also make the following assumptions, which 

are well confirmed in experiments:  nit q = n.  = const, ng = p / (kbZT) ,  where k b is the Boltzmann constant,  Z is a 

dimensionless constant coefficient of the order  of unity (the coefficient of supercompressibility).  Th e  density n .  

can be correlated with a quantity having the dimensionality of pressure p .  = kbZTn. ,  equal to 104 at in the order  

of magnitude. 

When p > Pd, the liquid phase is absent (W = 0) and problem (8) has the well-known solution 

2 
p 1~/2 = 2#kbTZ q (t]2 _ t]l) " (12) 

~/1 

When p < Pd, Eqs. (9) and (10) yield 

-1 
s = W p p .  (e (1 - W) + W p p . 1 )  -1 , 

where e =/Ag/kt l i  q. For the pressure we have the ordinary differential equation 

dp = q/~liq P* (e (1 - W) + pp.1  
dr/ n.  p 

IV)=  W 1 . ( 1 3 )  

Let us consider the region of flow where e(1 - W) << pp ,1  (if such a region exists). In this region, instead 

of Eq. (13) we may use the following equation: 

d p _  ~ W ,  (14) 
~ - ~ - - q  n,  

which can be integrated easily. In fact, we note that W--- 0 when p = Pd and when p = Pl < 0. Then,  from Eqs. 

(14) and (11) we obtain the solution in implicit form: 
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a3 - P l  In p - P l  a3 - Pd In p -- Pl qktliq a l  (15)  

Pd -- P l  Pw -- P l  Pd -- P l  Pw -- Pd n .  

Pw = P177= 0 " 

Relation (15) can be used to describe the distribution of the pressure near a well when p is close to Pw. 

When p approaches Pd, the left-hand side of relation (15) tends to - ~  and therefore this relation is unsuitable. 

We return now to the initial equation (13). 

Analysis shows that the equation W1 = 0 can have: 1) three different roots Pl,  P2, Pa, with Pl > Pd; 2) 

three roots Pl, P2, P3 with Pl > Pd, P2 = P3 < 0. In the first case the following equality is valid: 

3 
P (P - a3) (P - pl)  -1 (/7 - p2) -1 (p - p3) -1 = 

i=1 
A i  (P - P i ) - I  , 

where A i are certain coefficients. From this equality we derive an implicit solution for p: 

3 P - Pi ~ n q a a  (16) 
~ ,  A i l n  - - q  r/. 

i= 1 Pw -- Pi n .  

In the second case the following identity is valid: 

P (/9 -- a3) (/9 -- pl) -1 (p -- p2) -2 = A 1 (/9 - pl) -1 + A 2 (P - p2) -1 + A 3 (P - p2) -2  

and, correspondingly, there is the solution 

2 P - Pi q/Zliq a3 . (17) 
- A a  (P - P 2 ) - I  + ~ ,  A i l n  - - rl - A 3  (Pw - P 2 ) - I  

i=1 Pw - Pi n .  

Solutions (16) and (17) join with solution (12) at the point p = Pd. 

Thus, a solution has been found for the problem of the operation of an exploratory well of a gas-condensate 

field when the pressure at the face is lower than that at the start of condensation. 

N O T A T I O N  

N, number of mixture components; nig and Cig, density and concentration of i-th component molecules in 

the gas phase; niliq and Ciliq , density and concentration of i-th component molecules in the liquid phase; w, W, mole 

fraction of molecules in the liquid phase; s, saturation of the pore space with the liquid phase; r, distance to the 

well axis; rw, well radius along the drill bit; k, permeability; h, layer thickness;/~g, gas viscosity; fll iq,  condensate 

viscosity; T, temperature;  kb, Boltzmann constant; Z, coefficient of supercompressibility; fg a n d  fl iq,  phase 

permeabilities of gas and liquid, respectively; pg and Pliq, pressure in gas and liquid, respectively; Pjump, capillary 

jump of the pressure; Pd, pressure of the start of condensation; cio, composition of the bed mixture; a2, a3, Pl, P2, 

P3, P., parameters with pressure dimensionality; al ,  dimensionless parameter; e = ~/g/~tl iq,  viscosity ratio; Pw, 
pressure in the well. 
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